CLTC: A Chinese-English Cross-lingual Topic Corpus

نویسندگان

  • Yunqing Xia
  • Guoyu Tang
  • Peng Jin
  • Xia Yang
چکیده

Cross-lingual topic detection within text is a feasible solution to resolving the language barrier in accessing the information. This paper presents a Chinese-English cross-lingual topic corpus (CLTC), in which 90,000 Chinese articles and 90,000 English articles are organized within 150 topics. Compared with TDT corpora, CLTC has three advantages. First, CLTC is bigger in size. This makes it possible to evaluate the large-scale cross-lingual text clustering methods. Second, articles are evenly distributed within the topics. Thus it can be used to produce test datasets for different purposes. Third, CLTC can be used as a cross-lingual comparable corpus to develop methods for cross-lingual information access. A preliminary evaluation with CLTC corpus indicates that the corpus is effective in evaluating cross-lingual topic detection methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-lingual Distillation for Text Classification

Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories. This paper presents a novel approach to CLTC that builds on model distillation, which adapts and extends a framework originally proposed for model compression. Using soft probabilistic predictions for the documents in a label-rich language as the (ind...

متن کامل

Spanish/English Cross-Lingual Categorization

This article deals with the problem of Cross-Lingual Text Categorization (CLTC), which arises when documents in different languages must be classified according to the same classification tree. We describe practical and cost-effective solutions for automatic Cross-Lingual Text Categorization, both in case a sufficient number of training examples is available for each new language and in the cas...

متن کامل

Cross-Lingual Sentiment Classification Based on Denoising Autoencoder

Sentiment classification system relies on high-quality emotional resources. However, these resources are imbalanced in different languages. The way of how to leverage rich labeled data of one language (source language) for the sentiment classification of resource-poor language (target language), namely cross-lingual sentiment classification (CLSC), becomes a focus topic. This paper utilizes ric...

متن کامل

Cross-Lingual Text Categorization

This article deals with the problem of Cross-Lingual Text Categorization (CLTC), which arises when documents in different languages must be classified according to the same classification tree. We describe practical and cost-effective solutions for automatic Cross-Lingual Text Categorization, both in case a sufficient number of training examples is available for each new language and in the cas...

متن کامل

Co-Training for Cross-Lingual Sentiment Classification

The lack of Chinese sentiment corpora limits the research progress on Chinese sentiment classification. However, there are many freely available English sentiment corpora on the Web. This paper focuses on the problem of cross-lingual sentiment classification, which leverages an available English corpus for Chinese sentiment classification by using the English corpus as training data. Machine tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012